En segundo lugar, es esencial una reforma de la gobernanza corporativa, ya que lo que llevó a las plataformas a la explotación algorítmica de los usuarios fue el principio de maximización del valor para los accionistas. En vista de los conocidos costos sociales de este modelo de negocio (buscar la mayor cantidad posible de clics suele llevar a la multiplicación de estafas, desinformación y materiales que alientan la polarización política), la reforma de la gobernanza exige una reforma de los algoritmos.
Un primer paso hacia la creación de un modelo básico más saludable es exigir que las plataformas revelen (en el informe anual 10‑K que deben presentar ante la Comisión de Valores de los Estados Unidos) los indicadores a cuya optimización apuntan los algoritmos, así como el modo en que monetizan a los usuarios. En un mundo donde los ejecutivos de las tecnológicas van todos los años a Davos a hablar del «propósito» social de sus empresas, una publicación de datos fidedigna los presionará a cumplir lo que dicen y ayudará a formuladores de políticas, reguladores e inversores a distinguir entre ganancias merecidas y rentas indebidas.
En tercer lugar, los usuarios deben tener más influencia sobre el modo en que los algoritmos priorizan la información que se les muestra. De lo contrario, el desdén por las preferencias de los usuarios seguirá causando daño, al crear los algoritmos ciclos de retroalimentación propios en los que inducen a los usuarios a hacer clic en determinados contenidos y después infieren erróneamente que esas son sus preferencias.
En cuarto lugar, la metodología de «prueba A/B», estándar en la industria, debe dar paso a evaluaciones de impacto a largo plazo más integrales. El uso deficiente de la ciencia de datos lleva al cortoplacismo algorítmico. Por ejemplo, una prueba A/B puede mostrar que aumentar la cantidad de anuncios en pantalla tendrá un efecto positivo a corto plazo sobre las ganancias sin provocar un deterioro evidente en la retención de usuarios; pero esto supone pasar por alto el impacto sobre la adquisición de usuarios nuevos, por no hablar de casi todos los otros efectos potencialmente nocivos a largo plazo.
La ciencia de datos bien usada muestra que optimizar los sistemas de recomendación de modo tal de no buscar una recompensa inmediata (por ejemplo, apuntando más bien a la satisfacción de los clientes y la adquisición y retención de usuarios en el futuro) es el mejor modo que tienen las empresas para reforzar el crecimiento y la rentabilidad a largo plazo (suponiendo que puedan dejar de centrar toda la atención en el próximo informe de ganancias trimestrales). En 2020, un equipo dentro de Meta determinó que en un horizonte temporal más largo (un año), reducir la cantidad de notificaciones intrusivas mejoraría la utilización de las aplicaciones y la satisfacción de los usuarios. Se encontró una gran diferencia entre los efectos a largo plazo y los efectos a corto plazo.
En quinto lugar, hay que poner en acción una IA pública para evaluar la calidad de los resultados de los algoritmos, en particular en el área de la publicidad. En vista de los considerables perjuicios que supone la flexibilización de los criterios de aceptación de anuncios por parte de las plataformas, la autoridad británica encargada del control de la publicidad comenzará a usar herramientas de IA para analizar los anuncios e identificar a los que formulen «afirmaciones dudosas». Otros países deberían seguir el ejemplo. Igual de importante, la evaluación mediante IA debería ser un componente habitual de la disposición de las plataformas a permitir una auditoría externa de los resultados de los algoritmos.
Crear un entorno digital que recompense la creación de valor a partir de la innovación y castigue la extracción rentista de valor (sobre todo en los mercados digitales más importantes) es el desafío económico fundamental de nuestros tiempos. Para preservar la salud de los usuarios de las grandes tecnológicas y de la totalidad del ecosistema hay que evitar que los algoritmos estén supeditados al afán de ganancias inmediatas de los accionistas. Si los directivos de las empresas realmente creen en el principio de valor para las partes interesadas, deben aceptar que es necesario un cambio radical en el modo de crear valor, sobre la base de los cinco principios detallados antes.
El juicio inminente contra Meta no puede deshacer los errores del pasado. Pero mientras nos preparamos para la próxima generación de productos de IA, tenemos que instituir mecanismos para una correcta vigilancia de los algoritmos. El uso de algoritmos basados en IA influirá no sólo en lo que consumimos, sino también en cómo producimos y creamos; no sólo lo que elegimos, sino también lo que pensamos. Aquí no hay margen para el error.